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We consider the problem of locating the natural frequencies of uncertain systems whose

describing matrices are functions of an unknown parameter vector which is included in

an assigned bounding set. We face what we call the weak frequency interval detection

problem of determining the smallest interval which includes all possible frequencies. We

bounding set is a compact polyhedron, then this problem requires the solution of a finite

number of eigenvalue problems associated with the vertices of such a polyhedron.

Unfortunately, detecting the intervals associated with all the natural frequencies (strong

frequency interval detection problem), cannot rely on this property, so that one must

resort to Monte Carlo methods or numerical optimization to find them. We show that

the strong version is solvable ‘‘exploring the vertices only’’ under some stronger

assumptions. In the case in which the uncertainty bounding set is not defined by linear

inequalities, not even the extremal frequencies can be associated with the vertices of the

admissibility domain. Then again, numerical approach is necessary unless we accept to

merge the original system in a larger one of an ‘‘affine nature’’. Finally, we present as an

application the study of structures with uncertain mass distribution.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Parameter indeterminacy is a phenomenon which undermines system analysis in engineering. The uncertainty which
often occurs in the parameters is indeed a serious problem, especially when sophisticated mathematical tools and software
have to be applied. Uncertainty in the parameters may be caused by unpredictable physical variations, inaccurate modeling
due to approximation or it can be just the consequence of the lack of data in the analysis or design stage. In vibrating
mechanical structures, uncertainty often originates from the fact that the load and then the mass is not always known a
priori or it may change, or by the fact that some structures are re-configurable, and then stiffness coefficients are not fixed.

The ‘‘perturbation method’’ is a typical approach in this framework. It is based on the assumption that the parameters
can vary in a small neighborhood of their nominal value [1,2]. The assumption of small perturbation is not reasonable in
several cases, so that the unknown-but-bounded approach can be more effective. Essentially, the basic assumption is that
the parameters are unknown but bounded in a region which can be reasonably inferred by practical experience, a priori
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information or technical constraints. In the case of vibrating systems, the fundamental problem is that of determining the
intervals in which the natural frequencies may range once the admissible parameter set is given.

In this framework we acknowledge the contribution of Qiu and co-authors. In [3] the problem of determining frequency
bounds for interval vibrating systems has been introduced. A method based on the Rayleigh iteration has been proposed.
A refinement of the bounds has been proposed in [4] and more recently in [5,6]. The main result shows that under
appropriate assumptions on the perturbation matrices it is possible to compute exactly the admissible frequency intervals.
In dealing with systems with interval uncertainties, the interval arithmetic offers effective tools which have been
successfully exploited in [4,7,8]. A so-called interval-sensitivity method has been proposed in [9] and bounds for the
frequency intervals are determined via optimization algorithms. An approach based on fuzzy logic to evaluate
the frequency response has been proposed in [10]. Finally, in [11] it has been shown that the exact frequency intervals
can be determined if the perturbation data satisfy certain assumption.

With very few exceptions, the uncertainty considered in the existing work is of the interval type. This basically means
that each parameter of the system matrices is upper and lower bounded, independently of the others. Although this
assumption is appropriate in most cases, there are many systems which do not fit in this class. Clearly it is always possible
to embed the uncertain system in a larger one of an interval nature. The price we pay is that we get an over-estimation of
the frequency intervals. For instance the family of matrices

K ¼
k1 þ k2 �k2

�k2 k2

" #
;

with 1rkir2 is a subset of the family

K̂ ¼
a �b

�b c

� �
;

with 2rar4, 1rbr2, 1rcr2. Note that these bounds on a, b, c are the smallest we must fix to include every possible K in
the family K̂. Still the eigenvalues of K form intervals which are proper subsets of the frequency intervals of the family K̂.
Easy computations show that this inclusion introduces a strong over-estimation of the intervals. For instance the smallest
value for the first eigenvalue of K is 0.382, while the smallest value for the first eigenvalue of K̂ is negative �0:56155. Then
K is positive-definite for each value of the parameters while K̂ is not.

In this paper we generalize the existing work to the case in which the uncertainty in the matrices is of the polytopic
nature. This means that the compact region including the matrix parameters is defined by linear inequalities, namely it is a
polytope. As it is known, a polytope admits an equivalent vertex representation which is more convenient to develop our
theory.

The main result of the paper basically shows that for any polytopic system it is possible to find exactly the largest and
the smallest natural frequencies of the family or, in other words, the smallest interval including all possible natural
frequencies. This problem will be referred to as weak frequency interval detection. These extremal frequencies are found by
computing the natural frequencies of a finite numbers of ‘‘extremal systems’’ corresponding to the vertices of the polytopic
representation and computing the minima and, respectively, the maximal ones over such a set. According to the existing
literature [12–14], this is called a ‘‘vertex type of result’’. We stress that this kind of properties are not always quite obvious.
For instance a system of first-order linear differential equations with uncertainties of the type considered here does not
have the extremal property as far as asymptotic stability (i.e. the system describing matrix having negative real part
eigenvalues) is concerned [13]. However, it has been shown [12] that under the a priori assumption that the eigenvalues are
real, vertex results hold, for interval types of matrices. It is then reasonable to expect ‘‘vertex result’’ in vibrating systems,
since they are characterized by second-order equations whose describing matrices have real eigenvalues.

Unfortunately, even for the polytopic uncertainty description, there are no extreme point results for the strong interval
detection problem. In other words, the determination of the smallest interval for all natural frequencies is not solvable by
means of the computation of the frequency of a finite number of structures. Then Monte Carlo or numerical optimization
seem the only resort. Note that in the case of systems with ‘‘large’’ uncertainties, the fact that only the weak version of the
problem can be solved efficiently does not seem to be a crucial issue since the frequency intervals are, in general, deeply
overlapping, so that it is often useless to detect exactly all of them while the detection of the global interval of natural
frequencies can play a fundamental role.

The paper is structured as follows. In Section 2 we introduce and motivate the class of models. In Section 3 we introduce
the main result. In Section 4 we briefly consider more general types of uncertainty for which the weak problem can be
solved and we consider the problem of embedding nonlinear uncertainty region in linearly constrained uncertain region to
apply our result. In Section 5 we consider a complementary problem. Instead of detecting the smallest interval including all
frequencies for all possible values of the parameters, we find the values of the parameters which minimizes the maximal
frequency, respectively, maximizes the minimal frequency. This problem is of interest to design a structure to limit either
the upper of the lower frequency range. It can be solved via convex optimization for which efficient algorithms are
available. We finally propose an application of the theory to the weak interval detection of structures with uncertain mass
distribution. We show that the ‘‘extremal distributions’’ which give the extremal frequency are achieved by concentrating
all the mass on a single degree of freedom.
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2. Model description

In this paper we consider uncertain vibrating systems of the form

MðpÞ €qðtÞ ¼ �KðpÞqðtÞ; (1)

where
�
 qðtÞ 2 Rm is the Lagrangian coordinate vector;

�
 MðpÞ is the mass matrix;

�
 KðpÞ is the stiffness matrix;

�
 p 2 P is the uncertain parameter vector;

�
 P � Rs is the assigned parameter region.
The following assumptions will be considered in the paper:
(A1)
 MðpÞ and KðpÞ are symmetric and they are positive definite and positive semi-definite, respectively, for each p 2 P;

(A2)
 p is constant in time and there is no other information beside the fact it belongs to set P.
It is well known that, for a fixed p, the natural frequencies of the system are given by the square roots of the eigenvalues
of the pair ðMðpÞ;KðpÞÞ and, precisely, by the values o such that

½o2MðpÞ � KðpÞ�vðpÞ ¼ 0

admits a non-trivial solution vðpÞa0. In the sequel, for notational purposes, we use the compact expression ½M;K� to denote
the rectangular m� 2m matrix achieved by combining M and K and we denote by

S½MðpÞ;KðpÞ� ¼ fo1ðpÞ;o2ðpÞ; . . . ;omðpÞg

the set of the eigenvalues of o2MðpÞ � KðpÞ. These eigenvalues will be always considered in their increasing order

0ro1ðpÞro2ðpÞr � � �romðpÞ: (2)

The admissible intervals I i for the ith eigenvalue are defined as follows:

I i ¼ ½ai; bi�;

where

ai ¼ min
p2P

oiðpÞ; (3)

bi ¼ max
p2P

oiðpÞ: (4)

Note that the order (2) is valid for fixed p, and therefore the intervals I i may have non-empty intersections. In practice we
know that aiðpÞraiþ1ðpÞ and that biðpÞrbiþ1ðpÞ but it may well happen that aiþ1ðpÞobiðpÞ. The first problem we consider is
the strong version of the root interval detection.

Problem 1. Strong root interval detection. Given MðpÞ, KðpÞ and P, find the intervals I i.

Unfortunately, in general this problem is not easily solvable even under linearity assumption on MðpÞ and KðpÞ, unless we
resort to brute-force computation or randomized algorithms (see for instance [15]). The essential reason is that
the ‘‘internal’’ eigenvalues lie in intervals whose extrema can be everywhere in the admissible set. This is not the case for
the minimum and maximum eigenvalues. Therefore we consider, accordingly, the weaker version of the problem.

Problem 2. Weak root interval detection. Given MðpÞ, KðpÞ and P, find the smallest interval containing all I i, namely
½a; b� ¼ ½a1; bm�.

2.1. Polytopic uncertainty description

The considered problems can be solved exactly in the case of polytopic uncertainty description. We remind that given a
finite dimension vector space V we call a polytope with vertices v1; v2; . . . ; vs 2 V the set P � V defined as follows:

P ¼ v ¼
Xs

i¼1

pivi;
Xs

i¼1

pi ¼ 1; piZ0

( )
:

We call a polyhedron a set defined by linear equalities and inequalities:

P ¼ fv : dT
kv ¼ ek; k ¼ 1;2; . . . ; k; fT

i vrgi; i ¼ 1;2; . . . ; ig: (5)
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Any bounded polyhedron is a polytope and vice versa (see [16]) so the two representations above are equivalent in the case
of compact polyhedral sets. Accordingly, we introduce the following definition.

Definition 2.1. The system has a polytopic uncertainty description if

MðpÞ ¼
Xs

i¼1

Mipi; (6)

KðpÞ ¼
Xs

i¼1

Kipi (7)

and the vector p belongs to an assigned polytope P. We say that the system is in the standard representation if P is a
simplex, namely

Xs

i¼1

pi ¼ 1; piZ0: (8)

The symmetric matrices Mi and Ki are called the vertex matrices or generating matrices.

We point out that the description (6) and (7) is not in general the ‘‘natural one’’, namely, the one which is assigned in
practice since, in general, the admissible region is assigned by means of linear equalities and inequalities, not necessarily as
in Definition 2.1. However, the following essential lemma holds [16].

Lemma 2.1. Any system of the form (1) in which ½MðpÞ;KðpÞ� are of the form (6) and (7) and in which the parameter vector

p 2 P, where P is defined by the constraint (5), can be equivalently represented as in (6)–(8). Precisely the matrix family always

admits a suitable parametrization in terms of a vector p̂ which satisfies (8).

Note that if M and K are functions of different parameters pM and pK , this is a special case since we can always form an
augmented parameter vector

p ¼
pM

pK

" #
;

which is linearly constrained as long as its components pM and pK are such.
A special case is that in which p lies in a box as follows:

p�i rpirpþi ; i ¼ 1;2; . . . ; s:

In this case, we can consider ŝ ¼ 2s generating matrices

M̂h ¼
Xs

i¼1

Mip
h
i ; K̂h ¼

Xs

i¼1

Kip
h
i ;

where the ph
i are taken on the extrema of the intervals

ph
i 2 fp

�

i ; p
þ

i g:

For instance if p�1 rp1rpþ1 and p�2 rp2rpþ2 the four vertex matrices are

M̂1 ¼M1p�1 þM2p�2 ; M̂1 ¼M1p�1 þM2pþ2 ; M̂3 ¼M1pþ1 þM2p�2 ; M̂4 ¼M1pþ1 þM2pþ2

and the family of matrices can be equivalently represented as

M ¼
X4

i¼1

M̂ ip̂i with
X4

i¼1

p̂i ¼ 1 and p̂iZ0

(the same expression obviously holds for the K matrix). Finally note that the considered structure includes as special case
the interval systems, namely systems whose uncertainty bounds are given componentwise considered in [3]:

M�ikrMikrMþik; K�ikrKikrKþik:

Remark 2.1. The parametrization (6)–(8) is adopted for theoretical purposes only, but not used in practice. We will see
that, for computational purposes, we just need to compute the vertices of the assigned polyhedron P by means of well
established linear programming tools and to analyze the systems corresponding to the vertices. The reader is referred to
the next subsection to have an example of how the ‘‘vertex’’ systems can be derived starting from the ‘‘natural’’
representation in terms of inequalities.
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2.2. Motivating example

Consider the structure in Fig. 1. Here we assume that both the lengths and the masses are unknown. For instance the
masses may be unknown because the structure additional load is uncertain. The column length can be uncertain because
the structure is re-configurable or it is under design. If we neglect axial deformations of all the beams and we take
horizontal displacements of the floors as Lagrangian variables, then the mass matrix is diagonal

Mðm1;m2;m3;m4Þ ¼ DIAGfm1;m2;m3;m4g:

The stiffness matrix turns out to be

k1 þ k2 �k2 0 0

�k2 k2 þ k3 �k3 0

0 �k3 k3 þ k4 �k4

0 0 �k4 k4 þ kd

2
66664

3
77775:

The situation we wish to analyze is that in which there are only bounds available imposed either by the knowledge of the
system or by design specification. The easier way to impose specifications is to assume proper admissibility intervals such as

m�i rmirmþi (9)

and

k�i rkirkþi : (10)

Note that, in this case, while M is an interval matrix, K is not such, since the coefficients are correlated. In this simple situation,
physical considerations lead to the obvious conclusion that all the frequency intervals have as lower (respectively, upper)
extrema the frequencies which correspond to Mþi and h�i (respectively, M�i and hþi ). This special case will be discussed later on.

Clearly this situation is not always the actual one. For instance in most cases the overall mass is known but it is not
known how the mass is distributed on the floors. This introduces a constraint of the form

mi ¼ mi þ mi;

X4

i¼1

mi ¼ m;

miZ0;

where mi is the mass of the empty ith floor and mi is the portion of the additional mass assigned to the ith floor. Note that
this kind of uncertainty cannot be faced using an ‘‘interval analysis’’ approach. The vertices of the overall system ½M;K� are
Fig. 1. Flexible structure with uncertain parameters.
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achieved by assuming one of the mi’s equal to m and the remaining ones equal to zero, and by assuming the ki’s on their
extrema in all possible ways. For instance m1 ¼ m3 ¼ m4 ¼ 0, m2 ¼ m, k1 ¼ kþ1 , k2 ¼ kþ2 , k3 ¼ k�3 , k4 ¼ kþ4 , corresponds to a
vertex of the system. Therefore, this system has 4� 24

¼ 64 vertices.
If the lengths hi are uncertain then we can model the situation by considering nominal lengths hi and uncertain variations ni

for each of them. If we assume that only the overall length is given then we have to consider the following constraints.

hi ¼ hi þ ni;

X4

i¼1

ni ¼ 0;

n�i rnþi :

Note that, however, the situation is different from that of the uncertain mass, because the stiffness parameters ki are typically of
the form

ki ¼
ki

h3
i

¼
ki

ðhi þ niÞ
3

thus depend in a nonlinear way on the uncertain parameters ni. If we assume that the overall uncertainty is small, denoting by
hi ¼ hi þ di we have

hi �
ki

h
3

i

� 3
ki

h
4

i

di

then the linear analysis we are considering is still effective. Assuming ‘‘small perturbations’’ is reasonable in many situations
and other approaches (for instance [1]) require this assumption. Possible extensions to some classes of models with nonlinear
uncertainties will be discussed later.

3. Main results

In this section we investigate the ‘‘extreme point property’’ according to the following definition.

Definition 3.1. We say that a certain set P has the strong (weak) extreme-point property if the strong (weak) root interval
detection problem can be solved by computing the roots of all the systems achieved by taking p 2 vertP, the set of vertices
of P.

The first result of the section is the next theorem.

Theorem 3.1. Any system with polytopic uncertainty set has the weak extreme-point property.

Proof. Let us consider the Rayleigh’s quotient

rðp;qÞ ¼ qTKðpÞq

qTMðpÞq
:

It is known that the maximum eigenvalue can be expressed as

o2
mðpÞ ¼ max

JqJ¼1

qTKðpÞq

qTMðpÞq
:

Let us now consider, for the moment being, JqJ ¼ 1 be fixed. Take any pair of points pA and pB inside P and take their
convex combination

p ¼ apA þ ð1� aÞpB

0rar1. Define the function

jðaÞ6rðapA þ ð1� aÞpB;qÞ ¼
aqTKðpAÞqþ ð1� aÞqTKðpBÞq

aqTMðpAÞqþ ð1� aÞqTMðpBÞq
:

In view of the linearity of K and M, jðaÞ is a bi-linear function of a. By assumption, MðpÞ is positive definite and thus the
denominator is different from zero for all a. The maximum of jðaÞ is reached on the extrema (either a ¼ 0 or a ¼ 1) since,
as it is easy to check, djðaÞ=da does not change sign on ½0;1�. Then

max
0rar1

rðapA þ ð1� aÞpB;qÞ ¼
aqTKðpAÞqþ ð1� aÞqTKðpBÞq

aqTMðpAÞqþ ð1� aÞqTMðpBÞq
¼ maxfrðpA;qÞ;rðpB;qÞg:

The next step of the proof is to show that, necessarily, for fixed JqJ ¼ 1, rðpÞ reaches its maximum on the boundary. This is
immediate, since for any point p in the interior of P we can take two points p1 and p2 on the boundary of P such that p is in
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their convex combination thus necessarily rðp;qÞrmaxfrðpA;qÞ;rðpB;qÞg, as we have just seen. We conclude that P must
be necessarily on a face of the polytope P. On the other hand, any face of a polytope is also a polytope [16]. Let us consider
the hyperplane including such a face. By the same reasoning we can conclude that rðp;qÞ cannot reach the maximum on
the relative interior of the facet. By iterating these considerations we have necessarily that rðp;qÞ reaches its maximum on
a vertex.

Then,denote by v̂i the vertices1 of P and Mðv̂ iÞ ¼Mi. Denote by o2
mðv̂iÞ the largest eigenvalue of the pair ðMðv̂ iÞ;Kðv̂iÞÞ.

Then

o2
mðpÞ ¼max

p2P
max
JqJ¼1

qTKðpÞq

qTMðpÞq
¼ max

JqJ¼1
max
p2P

qTKðpÞq

qTMðpÞq
¼ max

JqJ¼1
max

p2vertfPg

qTKðpÞq

qTMðpÞq
¼ max

JqJ¼1
max

i

qTKðv̂iÞq

qTMðv̂ iÞq

¼ max
i

max
JqJ¼1

qTKðv̂iÞq

qTMðv̂iÞq
¼ max

i
o2

mðv̂iÞ:

The first two equalities are obvious. The third and the fourth hold in view of what has been previously proved. The fifth is

again obvious and the sixth holds by the definition of o2
mðv̂iÞ.

The proof for the ‘‘minimum eigenvalue’’ is now straightforward. Just note that we have to consider two cases:
�
 KðpÞ is only positive semi-definite. Then the minimum eigenvalue is 0. In this case we have to note that necessarily one
of the vertices Ki is singular namely qTKiq ¼ 0 for some JqJ ¼ 1. Indeed if it would hold qTKiq40 for all JqJ ¼ 1 then for
p such that

P
i pi ¼ 1 and piZ0

qTKðpÞq ¼
X

i

pi½q
TKiq�40:

Therefore the case in which the smallest eigenvalue is zero is easily detected.

�
 KðpÞ is positive definite for all p. Then the proof follows immediately by replacing ‘‘max’’ by ‘‘min’’. &

Corollary 3.1. If the system has a polytopic uncertainty set, then the largest and the smallest natural frequencies are achieved by

the vertex systems Mi;Ki so that they can be evaluated by considering a finite number of eigenvalue problems as

a ¼ min
i
feigenvalues of lMi � Kig

and

b ¼ max
i
feigenvalues of lMi � Kig:

In the special case of ‘‘box type’’ bounding regions

MðpÞ ¼M0 þ
Xs

i¼1

Mip
M
i ; KðpÞ ¼ K0 þ

Xs

i¼1

Kip
K
i ;

with

pM�
i rpM

i rpMþ
i ; pK�

i rpK
i rpKþ

i

the following theorem holds. Basically, this is the same result previously presented in [11], reported here for the sake of
completeness.

Theorem 3.2. If the matrices Ki and Mi are all positive semi-definite, then the strong root interval detection can be solved by

computing the eigenvalues of two pair of matrices. Precisely consider the extrema of the intervals ½ai; bi� as defined in Eqs. (3)–(4),
then:
�
 ai are the eigenvalues of l½M0 þ
Ps

i¼1 Mip
Mþ
i � � ½K0 þ

Ps
i¼1 Kip

K�
i �;P P
�
 bi are the eigenvalues of l½M0 þ
þ

i¼1 Mip
M�
i � � ½K0 þ

s
i¼1 Kip

Kþ
i �.
Proof. Take a symmetric matrix S, and denote by si its eigenvalues ordered by magnitude s1rs2r � � �rsm. Take a
positive semi-definite matrix M and let ~S ¼ SþM with ordered eigenvalues ~s1r ~s2r � � �r ~sm. Then

~s iZsi for all i:

Then if we replace any parameter pi by its upper bound pþi we achieve a set of eigenvalues which are all increased (or not
decreased). Therefore the maximum of all frequencies is necessary achieved corresponding to the maximum values of the
parameters. &
1 Note that if we consider the standard representation (6)–(8) we just have v̂ i ¼ ½0 0 0 . . . 0 1 0 . . . 0�, Kðv̂ iÞ ¼ Ki .
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We stress that, in general, the detected intervals may be overlapping and only in very special cases we can assure that
this phenomenon does not occur. The interested reader is referred to [17, Section 5.3.2, item (5)].

Remark 3.1. In general the interval systems do not have the strong extreme point property, unless we consider additional
assumptions as in [4]. For instance assume M ¼ I and

K ¼
3 �b

�b 3

� �

�1rbr1. The two frequency intervals are lmin 2 ½2;3� and lmax 2 ½3;4�. The internal value 3 common to both interval is not
achieved on the extrema 71 but for b ¼ 0, namely in the interior of the interval. Interestingly enough, if we abandon the
symmetry then the strong interval detection can be solved [12], as long as we can assume that all the eigenvalues of K̂ are
real. For instance, take

K̂ ¼
3 �b2

�b1 3

" #
;

with 1rbir2, then the two intervals are lmin 2 ½1;2� and lmax 2 ½4;5� and their extrema are on the vertices in agreement
with previous results [4,12].

4. More general uncertainty structures and embedding

A class of systems, which generalizes the one previously considered, having the weak extreme-point property is
introduced next.

Definition 4.1. The uncertainty has a multi-linear fractional description if

MðpÞ ¼
M0 þ

P
Mi1 ;i2 ;...;ir p

i1
1 pi2

2 . . . p
ir
r

n0 þ
P

mi1 ;i2 ;...;ir
pi1

1 pi2
2 . . . p

ir
r

; (11)

KðpÞ ¼
K0 þ

P
Ki1 ;i2 ;...;ir p

i1
1 pi2

2 . . . p
ir
r

n0 þ
P

mi1 ;i2 ;...;ir
pi1

1 pi2
2 . . . p

ir
r

; (12)

p�i rpirpþi ; (13)

where ik 2 f0;1g, the matrices Mi1 ;i2 ;...;ir , Ki1 ;i2 ;...;ir , the scalars mi1 ;i2 ;...;ir
and n0 are given.

As an example, consider the case where M is diagonal and K depends linearly on the parameters. If we divide by M, we
get the model €q ¼ �M�1Kq, and matrix M�1K has a multi-linear fractional description. Take for instance the model of
Section 2.2 to derive the multi-linear fractional description

M�1K ¼

M2M3M4ðk1 þ k2Þ �M2M3M4k2 0 0

�M1M3M4k2 M1M3M4ðk2 þ k3Þ �M1M3M4k3 0

0 �M1M2M4k3 M1M2M4ðk3 þ k4Þ �M1M2M4k4

0 0 �M1M2M3k4 M1M2M3ðk4 þ kdÞ

2
66664

3
77775

M1M2M3M4
:

We define ‘‘vertex matrices’’ all the matrices we can achieve by taking pi on the extrema

fM̂i ¼Mðp̂Þ; p̂i 2 fp
�
i ; p

þ

i gg; fK̂ i ¼ Kðp̂Þ; p̂i 2 fp
�
i ; p

þ

i gg:

Theorem 4.1. Any system with fractional uncertainty set has the weak extreme-point property.

Proof. The following properties are required for the proof.
�
 Given the family of symmetric matrices MðpÞ with bi-linear structure, MðpÞ is positive definite for all p if and only if all
the ‘‘vertex matrices’’ M̂i are all positive definite.

�
 Given a symmetric matrix S its largest eigenvalue s is

s ¼ inffs : ðS� sIÞ is negative definiteg:

The proof of the first claim is reported in [18]. The second claim is immediate since the eigenvalues of S� sI are those of S
translated by �s, and S� sI is negative definite if and only if all its eigenvalues are negative.
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The proof now requires the following extension. Given a symmetric matrix S and a positive definite matrix R the largest

eigenvalue s of sR � S has the same property indeed ðS� sRÞ is definite negative iff R�1=2
ðS� sRÞR�1=2

¼ R�1=2SR�1=2
� sI

is such. Then

s ¼ inffs : ðS� sRÞ is negative definiteg ¼ inffs : ðR�1=2SR�1=2
� sIÞ is negative definiteg

¼ maxfeigenvalues of ðR�1=2SR�1=2
� sIÞg ¼ maxfeigenvalues of ðS� sRÞg:

The proof is completed if we put together the previous statements. Indeed, for any s, MðpÞs� KðpÞ is negative definite for

all p if and only if the vertices M̂ is� K̂ i are negative definite for all i. Thus the largest eigenvalue of MðpÞs� KðpÞ is

maximum of the dominant eigenvalues of M̂is� K̂i.

The case of the smallest eigenvalue is identical. &

4.1. Embedding

There are cases in which the uncertainty bounding set is not a polyhedron and thus it is not described via linear equalities or in
which the entries of M and K are not affine functions of the uncertain parameters. Then, the extreme point property does not hold
in general. Consider the single degree of freedom system in Fig. 2 representing a shaft–flywheel body. Assume that the total length
L is fixed but the portion d of it attributed to the flywheel and the portion of the shaft l are not determined. So assuming l as
parameter so that d ¼ L� l we get JðlÞ ¼ J0ðL� lÞ and kðlÞ ¼ k0=l. Assume l�rlrlþ. The resulting frequency is

o ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k0

J0ðL� lÞl

s
;

which is a convex differentiable function. It is clear to see that in general the maximum value of such a frequency is not on the
extrema of such an interval. Therefore the general case is much more complex.

Given a system ½MðpÞ;KðpÞ� and p 2 P, one can consider the minimization (maximization) problem

min o1ðpÞ; p 2 P or max omðpÞ; p 2 P:

Clearly in general there is no guarantee of convergence, and the solver can be trapped in local minima. As an alternative
approach we can embed MðpÞ;KðpÞ in a larger family, namely

MðpÞ;KðpÞ ¼Mð ~pÞ;Kð ~pÞ for some ~p 2 ~P ;

with a ‘‘nice structure’’. Then by applying our results to the larger family, we achieve lower and upper bounds for the
overall frequency interval.

Note that this procedure is not alternative but complementary to the ‘‘optimization’’ procedure. In general, if we seek for
the minimum o1ðpÞ, then the optimization solver gives an upper bound, while the absorbing procedure provides a lower
bound. The opposite is true for the maximum eigenvalue omðpÞ.

To show an example of an absorbing procedure, consider the structure in Fig. 1. If we take the horizontal displacements
as variables, the mass matrix is diagonal. Now we remind that

ki ¼
ki

ðhi þ niÞ
3
;

with
P

ni ¼ 0. Assume that nirni is the given bound. Then we have

ki

ðhi þ niÞ
3
rkir

ki

ðhi � niÞ
3
: (14)
L

l

d

Fig. 2. The shaft–flywheel system.
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This is a linear constraint. However the constrain
P

ni ¼ 0 gives troubles. We have

ni ¼ �hi þ

ffiffiffiffiffi
ki

ki

3

s

then

X ffiffiffiffiffi
ki

ki

3

s
¼
X

hi:

Thus we get a nonlinear constraint on the ki on the interval (14). Let us now relax this equality to an inequality

X ffiffiffiffiffi
ki

ki

3

s
r
X

hi

along with the intervals (14). Then we can take any linear function aiki þ bi which is dominated by this function namely
such that

aiki þ bir

ffiffiffiffiffi
ki

ki

3

s
r
X

hi

for all i. Therefore we derive a set of linear constraints. Clearly the old (true) feasible set for the parameters is a subset of the
new one, and thus the intervals we derive are larger, in general, than the actual ones.

5. Minimizing (maximizing) the maximum (minimum) frequency

We consider the case in which the parameters are not uncertain but they are decision variables. This basically means
that p 2 P is not intended as ‘‘p is determined by circumstances’’ but it is a free design parameter. Then the following goals
may be of interest:
�
 maximizing the smallest frequency;

�
 minimizing the largest frequency.
These problems may be of interest in those cases in which the structure has to be protected from a noise whose spectrum is
dominated by a frequency which should not collide with natural frequencies. Let us consider the problem of rendering the
structure sub-critical (the other problem is exactly the same) and, accordingly, we wish to compute

min
p2P

omðpÞ:

This type of problem minimizing the largest eigenvalue is known in the literature [19]. For this problem a vertex result does
not hold in general in the sense that the maximum frequency is minimized in a point in P which is not necessarily on a
vertex. This is the case, for instance, of the system

M ¼
1þ 2p1 0

0 1þ 2p2

" #
; K ¼

2 �1

�1 2

� �
;

with p140, p240 and p1 þ p2 ¼ 1. It is immediate that the low and high frequencies o1 and o2 are, respectively,
minimized and maximized on either of the extrema p1 ¼ 1 and p2 ¼ 0 (or the opposite) precisely we get o2

1 ¼ 0:45142 and
o2

2 ¼ 2:21525. Conversely o1 and o2 are maximized and minimized in the middle p1 ¼ p2 ¼
1
2 where o2

1 ¼ 0:5 and
o2

2 ¼ 1:5.
The problem has the property that as long as P is a convex set, it is a convex optimization problem for which efficient

algorithms are available for its solution. In particular, the convexity of the problem assures that any local minimum is a
global one, therefore any gradient-type optimization algorithm assures convergence to the optimal.

6. Application to the uncertain mass distribution case

As an application of the proposed result, we consider the problem arising in structures in which the load is not known.
In particular we consider the case in which the mass is given but its spatial distribution is uncertain. Note that the case in
which the total amount of mass is also uncertain and K is fixed, is trivial. Indeed, according to Theorem 3.2 (and obvious
physical considerations), given a mass partition, all the natural frequencies are decreasing function of the total mass,
therefore variations of the total mass, within a given interval, can be easily dealt with by repeating our ‘‘uncertain
distribution analysis’’ twice by considering the minimum and maximum mass.
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6.1. Example 1

Consider the two-story frame presented in Fig. 3. Both floors are assumed to be rigid and composed of three square
fields (4� 4 m2). Mass density is assumed to be constant and equal to 250 kg=m2. All columns have the same flexural
stiffness and are assumed axially rigid. This structure has 6 degrees of freedom, namely, two translational and one
rotational for each floor. The Lagrangian coordinate vector is then ½x1 y1 y1 x2 y2 y2� where ðx1; y1Þ and ðx2; y2Þ are the
positions of the reference points of the first and the second floor, respectively, while y1 and y2 are the rotation of the first
and the second floor.

We assume that a certain amount of a total mass m can be arbitrarily distributed among the 16 points located at the
vertices of the square field. Denoting by mi, i ¼ 1;2; . . . ;16, the portion of mass placed on the ith point, the equality
constraint

P
imi ¼ m, miZ0 must hold. The situation corresponds to that presented in Section 2.2. According to that theory,

to determine the minimum and the maximum frequency, we need to examine 16 cases, namely mi ¼ m, i ¼ 1; . . . ;16. Since
the structure is symmetric, we actually consider only the points numbered in Fig. 4.

This example shows that the position of the mass which yields the minimum/maximum natural frequencies is not a
priori obvious. Indeed, one would expect that the maximum frequency is reached by placing the additive mass on the
position 5 on the first floor (see Fig. 4 for the numeration of the nodes), closest as possible to the center of mass and to the
center of stiffness. Instead, the maximum frequency (9.689 Hz) is reached placing the additive mass on position 10 on the
second floor (bright ball on Fig. 3). The minimum frequency is reached by concentrating the mass on point 6 (2.377 Hz).
Thus the overall interval turns out to be

½2:377;9:689�:

We stress that this interval is the largest interval for all possible distribution of the additive mass m on the points. The first
natural frequency and the last (sixth) frequency achieved by placing all the mass in the considered points are reported in
Tables 1 and 2 corresponding to m ¼ 2000 kg.

It is interesting to observe that the conclusion reached for the minimum natural frequency holds only for small values of
m, since if m is greater than about 3200 kg, then the minimum natural frequency is reached by placing all the mass on the
point 8 (Fig. 5).
Fig. 3. Two-story frame.

123

4 5

678
SECOND FLOORFIRST FLOOR

9 10

Fig. 4. Numeration of the points in model 2.
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Table 1
Minimum natural frequency.

Position 4 5 3 2 1 10 9 8 7 6

Frequency 2.529 2.527 2.516 2.516 2.504 2.444 2.429 2.390 2.390 2.377

Table 2
Maximum natural frequency.

Position 10 5 6 9 8 7 2 1 4 3

Frequency 9.689 9.652 9.434 9.378 9.298 9.298 9.284 9.006 8.842 8.636

Fig. 5. Minimum frequencies versus additive mass on different points.
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The structure has been further investigated in order to consider the case in which the mass is not necessarily
concentrated on the specified points but it can be distributed on the floors. By adding a unit mass at a generic point of
coordinates ½bx; by� (with respect to the reference point) the mass matrix is increased with the term

DM1 ¼

1 0 �by 0 0 0

0 1 bx 0 0 0

�by bx b2
x þ b2

y 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

2
666666664

3
777777775
� 1

if the mass is on the first floor or

DM2 ¼

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 �by

0 0 0 0 1 bx

0 0 0 �by �bx b2
x þ b2

y

2
6666666664

3
7777777775
� 1

if it is on the second floor. If additive masses ma;1 and ma;2 are placed both at the first and the second floor, we can write

M ¼M0 þDM1ma;1 þ DM2ma;2;
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where M0 is the unloaded mass matrix. Although we do not have a formal theory for a continuous mass distribution, the
lowest and the highest frequencies are achieved by concentrating the mass in a single point on the floor (the extremal mass
distribution is a Dirac function). To render the argument solid we can reason as follows. If we take a grid of arbitrarily many
points on the floors, and if we distribute the mass among them, we achieve a mass matrix which is the sum of as many
terms as the considered points M0 þ

P
i DMima;i. Then our theory assures that the extremal frequencies over arbitrary

distributions are indeed achieved by concentrating the mass on a single point.
Therefore we consider the problem of determining the largest interval over all possible choices of such a single point on

the floors (and not only on the numerated nodes). In this case, the maximum frequency f ¼ 9:714 Hz is obtained by placing
the additive mass at the point ½bx; by� ¼ ½0:825;0:825� either at the first or at the second floor. Instead, the minimum
possible frequency is f ¼ 2:377 Hz and it is reached by placing the mass on the second floor on point ½bx;by� ¼ ½4;4�, which
corresponds to node 6 as indicated in Fig. 4 as before.
6.2. Example 2

Let us consider the vertical tensile structure represented in Fig. 6, subjected to the gravity force parallel to the vertical
cables. The structure has 3 degrees of freedom (displacements of the planes). The stiffness parameters depend on the cable
tension forces, which are caused by the gravity forces and then they depend on the masses as well. As a consequence, a
variation of the mass produces not only a variation of the mass matrix but a variation of the stiffness matrix as well. Thus,
this structure has the peculiar characteristic that augmenting the mass might also result in increasing some natural
frequencies and vice versa.

Assume that a tension T0 is applied on the cables once all the masses are placed, so that T0 is the actual tension on
the lowest portion of the cable. The mass matrix and the stiffness matrix can thus be easily computed in the following
way:

M ¼

m1 0 0

0 m2 0

0 0 m3

2
64

3
75;

K ¼
1

h

4 �2 0

�2 4 �2

0 �2 4

2
64

3
75T0 þ

1

h

1 �1 0

�1 2 �1

0 �1 2

2
64

3
75m1g þ

1

h

0 0 0

0 1 �1

0 �1 2

2
64

3
75m2g þ

1

h

0 0 0

0 0 0

0 0 1

2
64

3
75m3g:

Note that the expression of K includes three geometric terms associated with the gravity force, hence with the mass and g

for the reasons previously explained.
m1

m2

m3

K22

K32

addittive mass

cable

K12

h

Fig. 6. A simple three DOF’s tensile structure.
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The total additive mass is ma ¼ ma1 þ ma2 þ ma3 where mai is the portion of the additive mass added to the ith floor. If we
assume m1 ¼ m2 ¼ m3 ¼ 3 kg, h ¼ 0:5 m, T0 ¼ 100 N and g ¼ 10 m=s2, then the mass and the stiffness matrices become

M ¼

3 0 0

0 3 0

0 0 3

2
64

3
75þ

1 0 0

0 0 0

0 0 0

2
64

3
75ma1 þ

0 0 0

0 1 0

0 0 0

2
64

3
75ma2 þ

0 0 0

0 0 0

0 0 1

2
64

3
75ma3;

K ¼

860 �460 0

�460 980 �520

0 �520 1100

2
64

3
75þ 20

1 �1 0

�1 2 �1

0 �1 2

2
64

3
75ma1 þ 20

0 0 0

0 1 �1

0 �1 2

2
64

3
75ma2 þ 20

0 0 0

0 0 0

0 0 1

2
64

3
75ma3:

According to our results, the minimum and the maximum natural frequencies are obtained when ma;i ¼ ma for some i.
Figs. 7 and 8 show the behavior of the minimum and maximum natural frequencies as a function of the total additive mass.
If this exceeds a certain amount (around 25 kg in the examined cases), positioning the whole mass on the first floor
maximizes the third natural frequency and minimizes the first one. Conversely, for additive mass below a certain threshold
(around 4.5 kg), both minimum and maximum frequencies are minimized when the additive mass is placed on the second
floor. The plot of all natural frequencies is reported in Fig. 9.
Fig. 7. Minimum natural frequency versus additive mass.

Fig. 8. Maximum natural frequency versus additive mass.



ARTICLE IN PRESS

Fig. 9. Spectra of the natural frequencies versus the additive mass.
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7. Discussion and conclusions

In this paper we proved that for uncertain vibrating systems whose matrices depend affinely on uncertain parameters
which are linearly bounded the weak frequency interval detection problem can be solved by means of a finite number of
eigenvalue problems. We have also investigated more general types of uncertainty, for which no general recipes are
available up to immersion techniques in which the original system family is replaced by an over-bounding one. The strong
interval detection problem can be solved by a finite number of tests under stronger assumptions of the uncertain
representation. These results essentially recover those due to previous references [4] as a special case.

In principle, from the computational standpoint, the interval detection problem can be solved by Monte Carlo or
optimization methods. However, these have the disadvantages that, typically, the number of samples or the number of
iterations can be very large. Besides, they are approximated methods. We actually show that for affine systems at least the
greater and the smaller frequencies can be exactly derived by means of a finite number of tests corresponding to
the vertices of the systems. We stress that knowing the upper and the lower frequencies is quite informative in most cases,
especially in systems with large uncertainties in which the intermediate frequency intervals are deeply overlapping.

Future work along this lines includes the investigation of other classes of uncertainties, possibly non-affine, or the
continuous mass distribution case. We also point out the problem of characterizing relevant quantities associated with the
modes such as the eigenvectors and the participating mass defined as

g61TMui=uT
i Mui;

where ui is the normalized eigenvector associated with ith mode and 1T
¼ ½1 1 . . . 1�. Clearly the problem is much harder

and it is not clear if, under the assumption that M and K are affine functions of the uncertain parameters, some kind of
interval detection problem can be solved. We were unable to provide results or counterexamples at the moment of writing
this paper. Finally, we believe that the polytopic uncertainty description adopted here can be quite useful in solving other
problems relevant to elastic structures such as characterizing static and dynamic responses. Further interesting
connections with the system theory literature [13,14] are expected in this issue.
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